IMERG: Background and Early Results

The GPM Multi-Satellite Team

SSAI and NASA/GSFC David Bolvin **George Huffman** NASA/GSFC, Chair **Dan Braithwaite Univ. of California Irvine Kuolin Hsu** Univ. of California Irvine **Robert Joyce** Innovim and NOAA/NWS/CPC Chris Kidd **ESSIC** and NASA/GSFC Eric Nelkin SSAI and NASA/GSFC Soroosh Sorooshian Univ. of California Irvine

Pingping Xie NOAA/NWS/CPC

• each half hour builds on the previous, so there is no way for late-arriving data to get into the system

• need to use the state at a previous time, say 2 hours earlier, as the base and compute forward to the new half-hour

THE CURRENT IMERG MICROWAVE CONSTELLATION

The original goal was 3-hourly observations, globally

- Original basis was sampling the diurnal cycle But also, morphed microwave loses skill outside ±90 minuntes
- The current IMERG constellation includes:
- 6 polar-orbit passive microwave imagers 4 SSMIS, AMSR-2, GMI
- 4 polar-orbit passive microwave sounders 4 MHS

The future is "interesting"

- 2 additional passive microwave sounders soon
- SAPHIR (asynchronous), ATMS (polar) Legacy satellites are allowed to drift
- apparently 06/18 (00/12) UTC is a stable
- exact coverage is a complicated function of time duplicate orbits aren't very useful for getting 3-
- hourly observations CGMS is studying placing a satellite in the 00/12
- UTC gap in coverage
- GPM fuel may last >10 years Launch manifests are sparse

Equator-Crossing Times (Local)

IMERG DESIGN PHILOSPHY

IMERG is a <u>unified U.S. algorithm</u> that takes advantage of the strengths of the partner algorithms

- Kalman Filter CMORPH CPC/NOAA
- Lagrangian time interpolation Kalman statistical weighintg
- PERSIANN with Cloud Classification System U.C.-Irvine
- Infrared-based precipitation
- TMPA GSFC NASA Satellite intercalibration
- Gauge combination
- All three partners have received PMM support
- Precipitation Processing System (PPS, GSFC/NASA)
- Computes/assembles input data sets
- Generates IMERG products Archives IMERG products
- IMERG is a single integrated code system appropriate for near-real and post-real time
- "The devil is in the details"

The Japanese merged-satellite counterpart is GSMaP

IMERG DATA REQUIREMENTS/GOALS

Resolution – 0.1° [i.e., roughly the resolution of microwave, IR footprints]

<u>Time interval</u> – 30 min. [i.e., the geo-satellite interval]

Spatial domain – global, initially covering 60°N-60°S

after month) [more data in longer-latency products]

<u>Time domain</u> – 1998-present; later explore entire DMSP era (1987-present) Product sequence – early sat. (~6 hr), late sat. (~16 hr), final sat.-gauge (~3 months

Sensor precipitation products intercalibrated to GPM GMI/DPR combined (2BCMB) Global, monthly gauge analyses including retrospective product – explore use in

submonthly-to-daily and near-real-time products Error estimates – still open for definition

Embedded data fields showing how the estimates were computed

<u>Precipitation type</u> estimates – probability of liquid

Operationally feasible, robust to data drop-outs and (strongly) changing constellation

Output in HDF5 v1.8 – compatible with NetCDF4

Archiving and reprocessing for near- and post-RT products

IMERG Data Fields

Half-hourly data file (Early, Late, Final)

- [multi-sat.] precipitationCal
- 2 [multi-sat.] precipitationUncal
- 3 [multi-sat. precip] randomError 4 [PMW] HQprecipitation
- 5 [PMW] HQprecipSource [identifier]
- 6 [PMW] HQobservationTime
- IRprecipitation
- 8 IRkalmanFilterWeight

9 probabilityLiquidPrecipitation [phase]

- Monthly data file (Final)
- [sat.-gauge] precipitation 2 [sat.-gauge precip] randomError
- 3 GaugeRelativeWeighting
- 4 probabilityLiquidPrecipitation [phase]

2BCMB vs. IMERG Final (mm/d) June 2014 ₀ 4 8 ₁₂ ₁₆ not identical · bias (ITCZ) **Hourly IMERG and Pocamoke Gauge Network Fine-Scale Grid. April-August 2014** • 20 surface gauges in a 6x5 km region near Wallops Island, Virginia Instantaneous correlation is modest, as expected • Treating PCMK as true for entire IMERG grid box introduces slight additional error [Courtesy J. Tan (UMBC; WFF)] 38.00 ________

PRELIMINARY VALIDATION RESULTS

IMERG Final Run vs. 3B43 for June 2014

- Both over- and under-estimates for largest events
- Rain Occurrence

3-Hourly, 0.25° IMERG, 3B42, MRMS for 15 June 2014

- Multi-Radar Multi-Sensor (MRMS) state-ofthe art radar-gauge over CONUS IMERG better than 3B42 for precipitation
- occurrence IMERG performs modestly better for precipitation volume

Rain Volume

SCHEDULE AND FINAL REMARKS

IMERG is becoming available

- Final Run for mid-March to January 2015
- Late Run from 7 March 2015
- Early Run from 1 April 2015

Early 2016: first-generation GPM-based IMERG archive, March 2014-present

Early 2017: first-generation TRMM/GPM-based IMERG archive, 1998-present

IMERG Data Access

- IMERG data is freely available
- PPS Access- http://pmm.nasa.gov/data-access/downloads/gpm (registration is quick and automated)
- GDISC Access http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&project=GPM

Real Time SVS IMERG Data Animation - http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4285

IMERG Email List - contact David Bolvin at david.t.bolvin@nasa.gov to be added